Multiscale methods for wave propagation problems

Organizers: Elena Giammatteo¹, Alexander Heinlein², Carlos Pérez Arancibia³, and Matthias Schlottbom⁴

¹University of Twente, Netherlands, e.giammatteo@utwente.nl ²Delft University of Technology, Netherlands, a.heinlein@tudelft.nl ³University of Twente, Netherlands, c.a.perezarancibia@utwente.nl ⁴University of Twente, Netherlands, m.schlottbom@utwente.nl

Short Description

Wave propagation plays a crucial role in many important applications, such as electromagnetics and geophysics. High-frequency waves and heterogeneous media are the major challenges in the construction of efficient and accurate numerical methods in such applications. In addition, nonellipticity of the involved partial differential equations and low-regularity of the corresponding solutions require the development of novel tools for the analysis of the numerical methods.

Topics covered in this minisymposium focus on high-order and special finite element or boundary elements methods for wave problems, and corresponding solution techniques. The proposed minisymposium brings together experts from numerical mathematics to discuss recent developments in this research field and to exchange ideas.